Reg No:
Name:

RAJAGIRI SCHOOL OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS)

FIRST SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2021

100908 /MA100A LINEAR ALGEBRA \& CALCULUS
Max. Marks: 100
Duration: 3 hours

PART A

(Answer all questions, each question carries 3 marks)

1. Determine the rank of the matrix $A=\left[\begin{array}{ccc}-3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2\end{array}\right]$.
2. Write down the Eigen values of $A=\left[\begin{array}{ccc}-3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2\end{array}\right]$.
3. Find $f_{x}(1,3)$ and $f_{y}(1,3)$ for the function $f(x, y)=2 x^{3} y^{2}+2 y+4 x+3$.
4. If $w=x^{2}+y^{2}-z^{2}$ where $x=\rho \sin \emptyset \cos \theta, y=\rho \sin \emptyset \sin \theta, z=\cos \phi$. Use appropriate form of the chain rule to find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \theta}$ and $\frac{\partial w}{\partial \varnothing}$.
5. Use double integral to find the area of the region enclosed between the parabolas $y=x^{2}$ and the line $y=2 x$.
6. Use polar coordinates to evaluate the area of the region bounded by $x^{2}+y^{2}=4$, the line $y=x$ and the y axis in the first quadrant.
7. Test the convergence of the series $\sum_{K=1} \frac{k}{k+1}$.
8. Test the convergence of the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}$ using Leibnitz test.
9. Find the Taylor series expansion of $\sin \pi x$ about $x=\frac{1}{2}$.
10. Find the values to which the Fourier series of $f(x)=x$ for $-\pi<x<\pi$, with $f(x+2 \pi)=$ $f(x)$ converges.

PART B

(Answer one full question from each module, each question carries $\mathbf{1 4}$ marks)

Module -I

11. (a) Solve the following system of equations

$$
\begin{gathered}
y+z-2 w=0 \\
2 x-3 y-3 z+6 w=2 \\
4 x+y+z-2 w=4
\end{gathered}
$$

(b) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$
12. (a) Diagonalize the matrix $A=\left[\begin{array}{ccc}6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 5\end{array}\right]$
(b) What kind of conic section the quadratic form $3 x_{1}{ }^{2}+22 x_{1} x_{2}+3 x_{2}{ }^{2}=$ represents? Transform it to Principal axes.

Module - II

13. (a) Find the local linear approximation to $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$.Use it to approximate $\overline{(3.04,3.98)}$.
(b) Let $w=x^{2}+y^{2}+z^{2}, x=\cos \theta, y=\sin \theta, z=\tan \theta$. Use chain rule to find $\frac{d w}{d \theta}$ when $\theta=\frac{\pi}{4}$
14. (a) Let $z=f(x, y)$ where $x=r \cos \theta, y=r \sin \theta$, prove that,

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2} .
$$

(b) Locate all relative maxima, relative minima and saddle points $f(x, y)=x y+\frac{a^{2}}{x}+$ $\frac{b^{2}}{y}, a \neq 0, b \neq 0$.

Module - III

15. (a) Evaluate $\iint\left(2 x^{2} y+9 y^{3}\right) d x d y$ where D is the region bounded by $y \equiv 2 x$ and $y=2 \sqrt{x}$
(b) Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} e_{\sqrt{ }}^{x^{2}} d x d y$ changing the order of integration.
16. (a) Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+$ $z=4$ and $z=0$.
(b) Evaluate $\iiint\left(1-x^{2}-y^{2}-z^{2}\right) d x d y d z$, taken throughout the volume of the sphere $x^{2}+y^{2}+z^{2}=1$, by transforming to spherical polar coordinates

Module - IV

17. (a) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k^{k}}{k!}$
(b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty}(-1)^{k} \frac{(2 k-1)!}{3^{k}}$
18. (a) Check whether the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(2 k)!}{(3 k-2)!}$ is absolutely convergent, conditionally, convergent or divergent.
(b) Test the convergence of the series $1+\frac{1.2}{1.3}+\frac{1.2 .3}{1.3 .5}+\cdots$..

Module - V

19. (a) Obtain the Fourier series of for $f(x)=e^{-s}$, in the interval $0<x<2 \pi$ with $f(x+2 \pi)=f(x)$ Hence deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$
(b) Find the half range sine series of $f(x)=2 x$ in $(0, l)$
20. (a) Expand $(1+x)^{-2}$.as a Taylor series about $x=0$ and state the region of convergence of the series.
(b) Find the Fourier series for $f(x)=x^{2}$ in theinterval $-\pi \leq x<\pi$ with

$$
(x+2 \pi)=f(x) . \text { Hence show that } \frac{1}{1^{4}}+\frac{1}{2^{4}}+\cdots=\frac{\pi^{4}}{90} .
$$

